miercuri, 9 decembrie 2015

PROPRIETATILE ELEMENTELOR



Universul se compune din materie. În acest sens atribuit cuvântului materie, ea poate exista în două forme:

  • substanţele, care se deplasează prin univers cu o viteză mai mică decât viteza luminii;

  • energia radiantă, care se deplasează prin univers cu viteza luminii.

Un corp se poate defini ca un ansamblu de materiale. Ceea ce diferă corpurile de materiale este faptul că materialele pot avea o compoziţie variabilă dar nu discontinuă, în timp ce corpurile pot avea o compoziţie discontinuă şi suprafeţele de discontinuitate definesc şi suprafeţele de separare între diferitele materiale ce formează corpul.
Substanţele se definesc printr-o compoziţie chimică constantă (materiale omogene). Termenul de materiale (uneori substanţe) eterogene este folosit pentru materiale ale căror compoziţie este variabilă dar nu discontinuă sau pentru amestecuri de substanţe la care raportul de amestecare variază.
Pentru amestecurile de substanţe mai există două noţiuni frecvent folosite: cea de aliaj, care defineşte un amestec de metale în stare solidă şi cea de soluţie care este folosită pentru amestecuri de substanţe în stare solidă cât şi lichidă.
Ulterior noţiunea de aliaj şi-a extins conceptul astfel încât astăzi se numesc aliaje şi soluţiile solide ale metalelor cu mici cantităţi de carburi metalice şi oxizi metalici.
Studiul chimic al unei substanţe oferă soluţii pentru compoziţia substanţelor, proprietăţile lor fizice şi chimice şi pentru reacţiile substanţelor. Materialele (atât omogene cât şi eterogene) sunt constituite la rândul lor din părţi şi mai mici, numite elemente chimice.
Un element chimic se defineşte ca cea mai mică parte de substanţă care poate fi decelată prin metode fizice şi chimice obişnuite. Fac excepţie de la metodele fizice şi chimice obişnuite procesele nucleare ca fuziunea şi fisiunea.
Mai multe elemente chimice (de acelaşi fel sau diferite) se pot combina pentru a forma ansambluri de elemente între care se stabilesc legături chimice. Atunci când un ansamblu de elemente nu poate fi decelat prin metode fizice obişnuite, el este o moleculă chimică (compus chimic). În natură elementele se găsesc într-o diversitate de stări chimice: sub formă de combinaţii, în stare nativă, sau în stare ionizată şi de stări fizice: solidă, lichidă, gazoasă sau plasmatică.
La temperaturi de zeci de mii de grade, toate elementele sunt sub formă de ioni; la mii de grade sunt formă de atomi liberi; pe Pământ, starea normală a elementelor este cea de combinaţie chimică. Sub formă atomică există numai gazele rare. Corespunzător structurilor învelişurilor electronice, elementele se clasifică în: heliu, hidrogen, elemente s şi p, elemente d şi f.
Dacă o substanţă conţine un acelaşi tip de elemente atunci se numeşte substanţă simplă
Substanţele simple reprezintă de fapt starea naturală în care pot exista elementele la o anumită temperatură.

  • în formă monoelementală (cazul gazelor monoatomice);
  • în formă moleculară (ansamblu molecule formate dintr-un număr finit şi mic de elemente de acelaşi fel);

  • în formă reticulară (ansamblu în stare solidă format dintr-un număr mare de elemente de acelaşi fel).

Alotropia este un fenomen caracteristic substanţelor simple prin care un element poate exista în diferite forme cristaline (alotropie de formă) sau în diferite forme (structuri) moleculare (alotropie de poziţie). Toate elementele cu structuri poliatomice au forme alotrope, în afară de Si, Ge, Bi şi Te care sunt monotrope.
Dintre cele cu molecule biatomice doar oxigenul există ca O2 şi O3. Alotropia este determinată de tipul legăturilor chimice şi structurilor moleculare şi cristaline pe care le pot realiza atomii unui element.
Legăturile în cadrul formelor alotropice se realizează fie prin orbitali atomici puri, fie prin orbitali hibrizi.
Teoretic, toate elementele se pot combina între ele potrivit legilor combinării chimice. Există aproximativ 500000 de combinaţii chimice descoperite. Cele mai frecvente combinaţii chimice sunt:


Combinaţii binare

  • hidrurile - combinaţii ale elementelor cu hidrogenul. Exemple: LiH care este o hidrură ionică; HCl care este o hidrură covalentă;

  • halogenurile - combinaţii ale elementelor cu halogenii. He, Ne, Ar nu formează halogenuri. Ele sunt covalente sau ionice;

  • oxizii - compuşi ai elementelor cu oxigenul care sunt compuşi ionici sau covalenţi.

  • sulfurile, arseniurile, siliciuri - combinaţii frecvent întâlnite în reacţiile chimice şi în natură.


Combinaţii complexe (coordinative)
Combinaţiile complexe sau coordinative rezultă din combinarea moleculelor sau ionilor cu alte molecule sau ioni. Un complex are un atom sau ion central, în jurul căruia se coordinează mai multe molecule neutre sau ioni de semn contrar, denumiţi liganzi. Atomul central este de obicei acceptor de electroni iar liganzii, donori de electroni. Numărul de liganzi din jurul unui atom este denumit număr de coordinare (N.C.).
El are valoarea 2 – 9 în complecşi, uzual 4 în complecşii tetraedrici şi 6 în cei octaedrici. În cristalele complexe, N.C. este maximum 14. Numărul de liganzi depinde de numărul de orbitali disponibili ai atomului central, de gradul lor de ocupare cu electroni, de natura legăturii chimice atom - ligand şi de factori sterici.


Sistemul periodic al elementelor
Pasul cel mai important în clasificarea elementelor chimice a fost făcut de chimistul rus Dimitri I. Mendeleev, prin elaborarea sistemului său periodic, prezentat în 1869. Ulterior, diferiţi autori au propus modele îmbunătăţite de reprezentare şi clasificare a elementelor.
În figură se prezintă o versiune modificată a sistemului periodic în spirală, poate cea mai aproape de realitate reprezentare şi clasificare a elementelor:
În comparaţie cu alţi chimişti, care nu acordau o importanţă deosebită legăturii între masa atomică şi valenţă, Mendeleev considera că masa atomică este proprietatea de bază care determină şi celelalte însuşiri ale elementelor. Urmând acest principiu, el a aranjat elementele chimice în ordinea crescândă a maselor atomice, pe mai multe niveluri unul lângă altul, având grijă totodată ca elementele ce posedă proprietăţi chimice asemănătoare să se afle întotdeauna unul sub altul.
Cercetările efectuate de Moosley au demonstrat că proprietăţile elementelor chimice sunt funcţii periodice ale numărului atomic Z (şi nu ale masei atomice M, aşa cum a crezut Mendeleev).
Atomul este alcătuit dintr-un nucleu (unde se află concentrată aproape întreaga masă a atomului) şi un înveliş electronic. Nucleul are dimensiuni extrem de mici însă comparativ cu distanţele de la nucleu la electroni. De exemplu, dacă s-ar reuşi comprimarea atomilor până la dimensiunea nucleului, atunci 1m3 de platină (care cântăreşte 21500 kg) ar ocupa un spaţiu de 1mm3.
Electronii sunt cele mai mici particule elementare încărcate cu sarcină electrică negativă, a căror sarcină electrică este deci cuantificată 1e- = -1.6·10-19C care se rotesc pe orbite în jurul nucleului cu viteze foarte mari (comparabile cu viteza luminii în vid, c = 3·109 ms-1).
Nucleul atomului se compune din două categorii de particule elementare cu masa atomică relativă 1: protonii (încărcaţi cu energie electrică pozitivă 1.6·10-19C) şi neutronii (neutrii electric).
Masa atomică relativă, conform S.I. este 1/12 parte din masa atomică a izotopului 12C, standard ales datorită stabilităţii acestui nucleu (12C, alături de 4°Ca este unul dintre cele mai stabile nuclee), abundenţei mari acestui izotop în natură şi reactivităţii chimice scăzute.
Învelişul electronic, după cel mai recent model, cel mecanic-cuantic, are o structură stratificată, electronii şi orbitele fiind caracterizate din punct de vedere energetic prin aşa-numitele numere cuantice: numărul cuantic principal (n), numărul cuantic secundar (l), numărul cuantic magnetic (m), şi în plus, caracteristic electronilor din orbite mai este şi numărul cuantic de spin (s)


Numărul cuantic principal n este o măsură pentru energia şi raza orbitei circulare pe care gravitează electronul. El ia valorile întregi 1, 2, 3, 4, 5, ... iar orbitele se notează cu literele K, L, M, N, O, .... Electronii care au acelaşi număr cuantic principal, adică se găsesc la aceeaşi distanţă medie de nucleu, formează un strat electronic. Se poate demonstra că fiecare strat conţine n2 orbite.
Electronii din acelaşi strat se disting prin numere cuantice secundare l şi este o măsură pentru subnivelul energetic şi semiaxa mică a orbitei şi ia valori între 0 şi l-1.
Toate orbitele pentru care l = 0 sunt circulare, celelalte sunt orbite eliptice. Toate orbitele cu acelaşi n şi l diferit formează substraturile electronice ale stratului n.
Fiecare substrat (n şi l acelaşi) este format din 2l+1 orbite caracterizate de numărul cuantic magnetic m, care este o măsură pentru orientarea planurilor orbitale.
În funcţie de forţa de atracţie pe care o exercită nucleul asupra electronilor săi, elementele chimice se pot diviza în elemente electronegative (nemetalele) care manifestă tendinţa de a capta electroni de la alţi atomi, şi elemente electropozitive (metalele) care cedează relativ uşor electroni de pe ultimul strat formând ioni pozitivi.
În funcţie de electronegativitate se stabileşte şi caracterul ionic sau covalent al combinaţiilor; astfel, se spune că o combinaţie de două elemente este ionică atunci când un electron al unuia din elemente părăseşte orbita atomului pentru a trece să orbiteze într-un orbital al celuilalt atom; în aceeaşi ordine de idei, o combinaţie este covalentă când legătura se formează exclusiv prin deformarea orbitelor electronice şi formarea unei orbite de legătură în care vor gravita 2 electroni cu spin opus, fiecare al câte unui atom originar. În realitate însă nu există combinaţii 100% ionice sau 100% covalente.
Cuantica funcţiilor orbitale înlocuieşte conceptul clasic de traiectorie a electronului cu cel de funcţie de undă, care defineşte poziţia în spaţiu ca amplitudine a unei unde.
În secolul al XIX au fost făcute mai multe încercări de clasificare a elementelor, care se cunoşteau deja în număr foarte mare. Criteriile au fost: comportarea faţă de oxigen (Thenard, Berzelius), faţă de hidrogen (Dumas), electronegativitatea şi multe altele.
Legea periodicităţii a fost enunţată de Mendeleev (1869), astfel: „Proprietăţile elementelor sunt funcţie periodică de masa atomică A”. Azi, în locul maselor atomice, se utilizează un criteriu mai sigur, numărul atomic Z. Sistemul periodic este reprezentarea acestei legi.

Elementele au două feluri de proprietăţi:

  • Proprietăţi neperiodice, cum sunt numărul atomic Z, masa atomică A, pe baza cărora elementele se pot aşeza într-un şir crescător;

  • Proprietăţi periodice, cum sunt proprietăţile chimice (starea de oxidare, potenţialul de electrod), unele proprietăţi fizice (spectre, energii de ionizare, etc. şi unele proprietăţi geometrice: raze atomice şi ionice, volume atomice şi ionice, densitatea, temperatura de topire şi fierbere, etc.) care permit gruparea pe verticală a elementelor asemănătoare.

Structura sistemului periodic
Există 18 grupe şi 7 perioade. Coloanele verticale se numesc grupe de elemente.
Grupa constituie o serie de elemente cu număr identic de electroni aflaţi pe ultimul strat. Perioada constituie o serie de elemente cu număr identic de straturi electronice.
Hidrogenul şi heliul alcătuiesc perioada 1. Hidrogenul este trecut ca fiind primul element în grupa 1-a sau a 17-a, fie alături de heliu, la mijlocul tabelului, în partea superioară. Heliul, de regulă, este trecut primul în grupa gazelor rare sau inerte, numerotată grupa 18-a.
Elementele s şi p alcătuiesc grupele 1, 2, 13 – 18, iar elementele d şi f alcătuiesc grupele 3- 12. Dintre elementele d şi f distingem: 30 de elemente tranziţionale, în perioadele 4, 5 şi 6; lantanidele şi actinidele apar în două familii de câte 14 elemente (a ceriului şi a thoriului), în perioadele 6 şi 7.
Plasarea elementelor s şi p în grupe este determinată de numărul de electroni din ultimul strat. De exemplu: P (Z = 15, 1s22s22p63s23p3) are 5 electroni pe ultimul strat, rezultă că aparţine grupei a 15-a, fiind un element de tip p; Na (Z = 11, 1s22s22p63s1) are 1 electron pe ultimul strat, rezultă că aparţine grupei a 1-a, fiind un element de tip s.
Plasarea elementelor d în grupe este determinată de suma numărului de electroni s de valenţă din ultimul strat şi a electronilor d din penultimul strat. 
De exemplu: Sc (Z = 21, 1s22s22p63s23p64s23d1) are 2 + 1 = 3 electroni şi aparţine grupei a 3-a.; Fe (Z = 26, 1s22s22p63s23p64s23d6) are 2 + 6 = 8 electroni şi aparţine grupei a 8-a.
În timp ce elementele grupate în grupa A au un caracter predominant metalic, formând reţele metalice, elementele din grupa D sunt nemetale, gaze, formând molecule monoatomice. Elementele grupei D au structură electronică ns2np6 de unde rezultă că moleculele lor sunt monoatomice.
Spre deosebire de acestea, elementele din grupul A au în principal, cu excepţia borului, structuri metalice. Al, Ga, In, Tl nu formează între ele legături covalente. Colectivizarea electronilor din stratul de valenţă dă naştere unei forme speciale de legătură multiatomică, legătura metalică.
Elementele din grupa C sunt gaze (I, Br, At) iar elementele din B sunt substanţe solide care prezintă structuri variate, uneori forme alotropice. 
În cadrul grupei C, halogenii formează molecule diatomice cu o legătură σ. Elementele azot şi oxigen, spre deosebire de precedentele formează legături multiple.
Elementele din grupurile B şi C cu excepţia borului, azotului şi oxigenului din perioada a 2-a, au structuri moleculare sau cristaline în care fiecare atom formează 8 - n legături covalente cu atomi de aceeaşi specie. Astfel elementele din grupa a 17-a care au un electron neâmperecheat (sunt monocovalente) formează între ele 8 - 7 = 1 legătură σ astfel încât moleculele lor apar diatomice. Starea de agregare se corelează cu scăderea covalenţei.


Proprietăţi fizice periodice
Proprietăţile fizice ale elementelor, cu periodicitate, sunt: densităţile, razele atomice şi ionice, volumele atomice şi ionice, punctele de topire şi de fierbere, energiile de ionizare, conductibilitatea termică şi electrică, spectrele optice.
Raza atomică se exprimă în angströmi (Å) sau nm., majoritatea valorilor oscilând în jurul valorii de 1 - 2Ä. Razele atomice descresc în perioade, în ordinea: metale alcaline, gaze rare, metale alcalino-pământoase, halogeni, elementele grupei a 16-a, etc. În grupe, razele atomice cresc de sus în jos, datorită creşterii numărului de straturi electronice şi a numărului atomic Z. 

Raza ionică se exprimă în angströmi (Å) sau nm. şi diferă de raza atomică. Pentru a se forma un cation de metal, acesta trebuie să piardă electroni, de unde rezultă diferenţele între valorile razei atomice şi razei ionice, care depind şi de starea de oxidare. Razele cationilor, în perioade, scad de la stânga la dreapta. În cazul formării anionilor, aceştia au surplus de electroni, iar razele anionilor sunt mai mari decât razele lor atomice. În grupe, razele cationilor şi anionilor cresc de sus în jos. 
Volumul atomic se defineşte ca fiind raportul dintre masa atomică şi densitate. Volumul atomic este volumul unui atom-gram dintr-un element. Volumele atomice prezintă o periodicitate similară cu a razelor atomice. Elementele tranziţionale şi cele de la mijlocul sistemului periodic au cele mai mici volume atomice.
Densitatea elementelor (ρ) se defineşte ca fiind raportul dintre masa atomică şi volumul atomic (atom-gram/cm3). Aceasta creşte în grupe de sus în jos, odată cu creşterea numerelor atomice Z, iar în perioade, aceasta creşte de la extremităţi spre centrul sistemului periodic (grupa 9). Metalele sunt clasificate în metale uşoare, adică cu densitate până la valoarea de 5atom-gram/cm3 şi grele cu ρ > 5 atom-gram/cm3.
Elementul cu cea mai mică densitate este Li (ρ = 0.53at-g/cm3), iar cel mai greu metal este Os (ρ = 22.6 at-g/cm3).
Temperaturile de topire (p.t.) (temperaturile necesare pentru a trece substanţele din stare solidă în stare lichidă) şi temperaturile de fierbere (p.f.) (cantităţile de căldură necesare pentru a trece substanţe lichide în stare de vapori) variază periodic deoarece depind de caracteristicile atomilor (volum, sarcină, etc.). Atomii elementelor cu volum mic, care se leagă covalent (puternic) se topesc la temperaturi mai ridicate decât atomii cu volum mare care se leagă ionic. În perioade, temperaturile de topire şi temperaturile de fierbere cresc la extremităţi, către grupa a 14 şi în grupele 3 –12 cresc cu Z.
Exemple: Hg are p.t. - -38.84°C; p.f. = 357°C (cel mai uşor ajunge în stare de vapori dintre toate metalele); W are p.t. = 3410°C (este cel mai refractar); p.f. = 5930°C ( cel mai greu ajunge în stare de vapori).
Pentru a smulge un electron din învelişul unui atom se consumă energie. Aceasta se transmite atomului fie prin bombardarea cu electroni, fie prin absorbţie de lumină. Se numeşte energie (sau potenţial) de ionizare mărimea EI, unde <EI> = eV (electron-volţi) şi e este sarcina electrică elementară, iar V potenţialul de accelerare a electronilor folosiţi pentru a provoca ionizarea.
Cu alte cuvinte energia de ionizare este energia necesară îndepărtării electronilor dintr-un atom al unui element, pentru a-l transforma într-un ion pozitiv, fiind o mărime foarte ine definită din punct de vedere calitativ şi cantitativ. 
Energiile de ionizare ale atomilor, în perioade, cu mici excepţii, cresc de la stânga la dreapta (datorită creşterii sarcinii nucleului şi ecranării reciproce slabe a electronilor din acelaşi strat exterior) iar în grupe descresc de sus în jos (datorită ecranării de către un număr crescând de electroni din straturile interioare). Cele mai mari energii de ionizare ale primului electron, le au gazele rare (descresc de la He la Rn), apoi halogenii, etc., iar cele mai mici, metalele alcaline. 
Energia de ionizarereprezintă cantitatea de energie consumată pentru a îndepărta un electron din învelişul electronic al unui atom aflat în stare gazoasă.

  • Cele mai mici energii de ionizare se întâlnesc la elementele grupei 1, întrucât pe primul strat al învelişului electronic se află un singur electron.

  • Cele mai mari energii de ionizare se întâlnesc la elementele din grupele 17 şi 18, pentru că au 7 şi respectiv 8 electroni pe ultimul strat.

În grupă, energia de ionizare scade de sus în jos. Cu cât numărul de straturi din învelişul de electroni este mai mare, cu atât scade forţa de atracţie a nucleului faţă de electronii periferici.
Elementele care formează uşor ioni pozitivi (au energie de ionizare mică) au caracter electropozitiv sau metalic.
Elementele au energie de ionizare mare, formează greu ioni pozitivi, au caracter nemetalic.
Afinitatea pentru electroni a unui element este energia degajată de un atom în faza gazoasă atunci când acceptă un electron. Cu cât valoarea afinităţii pentru electroni este mai mare cu atât se degajă o energie mai mare.
Elementele care au afinitate mare pentru e- au tendinţa de a forma ioni negativi, se numesc elemente electronegative sau nemetale.
Atomii care cedeză electroni devin ioni pozitivi sau cationi, iar atomii care acceptă electroni devin ioni negativi sau anioni. Razele ionice ale cationilor sunt mai mici decât razele atomice. Razele ionice ale anionilor sunt mai mari decât razele atomice.
Conductibilitatea termică (proprietatea metalelor de a fi străbătute de un flux de căldură sub acţiunea unei diferenţe de temperatură, J/m.s.K) şi conductibilitatea electricăa metalelor (proprietatea metalelor de a fi străbătute de un curent electric sub acţiunea unei diferenţe de potenţial) cea mai bună o are argintul, apoi cuprul, aurul, aluminiul, calciul, sodiul, etc.
Spectrele optice, mai exact, cele electronice, se datorează electronilor din straturile exterioare ale atomilor, denumiţi electroni de valenţă. Atomii elementelor din aceeaşi grupă dau spectre optice asemănătoare.

Proprietăţile chimice periodice
Electronegativitatea şi electropozitivitatea sunt proprietăţi calitative ale elementelor, care sunt greu de definit cantitativ. Ele exprimă tendinţa atomilor elementelor de a atrage sau ceda electroni, transformându-se în ioni negativi şi respectiv ioni pozitivi.
Elementele din grupa a 18-a au stratul electronic exterior complet ocupat, ceea ce le asigură o mare stabilitate chimică. Ele nu tind să formeze ioni sau combinaţii.
Elementele celorlalte grupe tind să se transforme în ioni cu configuraţie electronică de gaz inert, pe calea cea mai scurtă: elementele cu puţini electroni în stratul exterior, cedează uşor aceşti electroni trecând în ioni pozitivi iar cele cu mulţi electroni, acceptă electroni, trecând în ioni negativi.
Electronegativitatea care este în opoziţie cu electropozitivitatea creşte în perioade de la stânga la dreapta şi în grupe, de jos în sus. Cele mai electronegativ element este fluorul iar cel mai electropozitiv element este franciul.
Elementele electronegative se numesc nemetale, trec uşor în ioni negativi, în stare elementară sunt gazoase sau uşor volatile, rele conducătoare de căldură şi electricitate şi sunt plasate în colţul din dreapta sus al sistemului periodic.
Elementele electropozitive, numite metale, au toate caracteristicile nemetalelor, numai în sens opus. Elementele B, Si, As, Te, At, Al, Ge, Sb, Po se numesc semimetale şi au proprietăţi intermediare. Cele enunţate mai sus sunt valabile pentru grupele 1, 2, 13 - 18.
Electropozitivitatea metalelor tranziţionale scade de sus în jos în grupă.
Electronegativitatea este o mărime relativă care reflectă capacitatea unui atom de a atrage sau respinge electronii de legătură dintr-un compus chimic.

  • În tabelul periodic, cesiul (Cs), care este ultimul element din grupa 1, are electronegativitatea minimă, caracterul electropozitiv cel mai puternic, caracterul metalic cel mai pronunţat, iar florul (F) este cel mai electronegativ element şi cel mai reactiv nemetal.
  • În tabelul periodic electronegativitatea creşte în grupă de jos în sus, iar în perioadă creşte de la stânga la dreapta.
  • Există şi elemente care au caracter de tranziţie între metale şi nemetale, prezentând proprietăţi ale ambelor tipuri de elemente. Ex: B, Si, Ge, As, Sb, Te, Po, At.


Caracterul metalic sau electropozitiv scade în perioadă de la stânga la dreapta şi creşte în grupă de sus în jos. Toate elementele din grupele secundare au caracter metalic slab electropozitiv care variază invers decât în grupele principale adică scade de sus în jos.
Caracterul nemetalic sau electronegativ creşte în perioadă de la stânga la dreapta şi în grupă de jos în sus.

Valenţaelementelor prezintă capacitatea lor de combinare cu alte elemente. Valenţa maximă a unui element este numărul maxim de atomi de hidrogen sau echivalenţi ai acestuia, cu care elementul respectiv se poate combina. Valenţa 8 este atinsă în puţine combinaţii: RuO4, OsO4, OsF8, XeF8. În combinaţii de două elemente nu apar valenţe mai mari de 8.
Valenţa pozitivă este caracteristică elementelor grupelor principale 1, 2, 13, valenţa negativă grupelor 14 – 17. Metalele tranziţionale sunt aproape toate polivalente; în stare de valenţă superioară au comportament de nemetale iar în cea inferioară, de metale.
                    Electrovalenţa reprezintă numărul de electroni cedaţi sau acceptaţi de atomii unui element în procesul de formare a ionilor, deci electrovalenţa reprezintă valenţa elementelor în combinaţii ionice.
                             Covalenţa reprezintă numărul de electroni pe care atomii unui element îi pun în comun cu electronii altor atomi identici sau diferiţi.
                        În tabelul periodic, valenţa maximă este aceeaşi pentru toate elementele din aceeaşi grupă, iar pentru grupele principale 1, 2, 13, 14, 15, 16, 17 este egală cu numărul de electroni de pe ultimul strat.

  • Elementele cu 1, 2 şi 3 electroni pe ultimul strat al învelişului electronic au valenţă invariabilă, egală cu numărul acestor electroni.

  • Elementele cu 4, 5, 6, 7 electroni pe ultimul strat al învelişului electronic au valenţă variabilă în funcţie de combinaţiile în care se află.

  • Elementele care au 8 electroni pe ultimul strat al învelişului electronic nu participă la interacţiuni cu alţi atomi, întrucât au o configuraţie electronică stabilă. Ele se numesc gaze rare sau nobile.

  • Elementele tranziţionale din grupele secundare 3 – 12 ale sistemului periodic, care au ultimul substrat d în curs de completare, au valenţă variabilă de la 1 până la numărul grupei din care fac parte.


Starea (numărul) de oxidare (N.O.) a unui element este sarcina electrică, reală sau formală, pe care o are elementul respectiv, într-o combinaţie chimică. Ea substituie noţiunea de valenţă şi este mai bine definită.
Ţinând cont de electroneutralitatea combinaţiilor, numerele de oxidare ale atomilorse stabilesc empiric după următoarele reguli:
• N.O. = 0, pentru atomii din substanţele elementare, deoarece moleculele acestora se formează prin participare cu electroni şi nu prin transfer de electroni între atomi;
• N.O. al ionilor monoatomici, în substanţele ionice, este egal cu numărul electronilor primiţi sau cedaţi;
• N.O. al atomilor, în combinaţii covalente, se atribuie începând cu elementul cel mai electronegativ.
Semnul sarcinii electrice atribuite elementului depinde de electronegativitatea celuilalt element din combinaţie. De exemplu: clorul este în stare de oxidare negativă (-1) în NaCl şi pozitivă (+1) în Cl2O. Fluorul şi oxigenul sunt electronegative în toate combinaţiile şi au stările de oxidare (-1) şi respectiv (-2).
Metalele de tip s posedă o sigură stare de oxidare, corespunzătoare cu numărul grupei. La metalele de tip p stările de oxidare pe care le manifestă diferă între ele prin două unităţi, iar la metalele tranziţionale d, stările de oxidare diferă între ele printr-o unitate.
Suma stărilor de oxidare maxime, în valoare absolută pozitive şi negative, în cazul elementelor care apar în mai multe stări de oxidare (exclusiv hidrogenul), este egală cu 8. 

Aciditatea (caracterul acid) şi bazicitatea(caracterul bazic) adică tăria (gradul de disociere) acizilor şi bazelor variază paralel cu electronegativitatea în cazul acidităţii şi paralel cu electropozitivitatea în cazul bazicităţii.
În perioade bazicitatea hidroxizilor scade iar aciditatea oxiacizilor creşte, de la stânga la dreapta. În grupă, caracterul acid al hidracizilor creşte de sus în jos, iar cel al oxiacizilor scade de sus în jos. Astfel, NaOH – bază tare, Mg(OH)2 – bază slabă, Al(OH)3 – caracter amfoter, iar H2S – acid slab şi HCl – acid tare. HF este un acid mai tare decât HCl, H2SO4 este un acid mai tare decât H6TeO6 (acidul teluric).
Elementele de tip d, din cauză că apar în mai multe stări de valenţă, nu se supun acestor reguli. În stările de valenţă inferioare, ele au un caracter bazic iar în cele superioare, un caracter acid.

CARACTERIZAREA GENERALĂ A METALELOR
Elementele cu caracter metalic reprezintă peste 75% din totalul elementelor şi sunt amplasate în partea stângă a sistemului periodic, sub diagonala fictive B-Si-As-Te-At. Noţiunea de caracter metalic este strâns legată de anumite proprietăţi (conductibilitate electrică şi termică, opacitate, culoare, luciu metalic, maleabilitate, ductilitate, duritate etc.) care depind în mod esenţial de structura metalică şi implicitde natura legăturii metalice.
Elementele cele mai răspândite în scoarţa terestră sunt cele cu numere de ordine mici, aşezate în partea de sus a sistemului periodic (O, Si, Al, Fe, Ca, Na, Mg,Ti, H şi C). Majoritatea elementelor se găsesc exclusiv sub formă de combinaţii chimice şi numai un număr mic se întâlnesc în stare nativă. În funcţie de conţinutul procentual (în greutate) din natură, elementele se clasifică în 10 grupe numite clarkuri. Elementele cu Z impar sunt mai puţin răspândite decât elementele vecine în sistemul periodic, cu Z par. Hşi He sunt cele mai răspândite elemente din Univers. Ipoteza că, imediat după geneza Universului, datorită temperaturii extrem de scăzute materia se afla în cea mai mare parte sub formă de H(89%) şi He (11%) poate explica abundenţa acestora, deşi prin reacţii nucleare, în decursul timpului s-au format şi alte elemente, determinând marea varietate a materiei existente în Univers.
Metalele, după cum se poate observa în tabelul periodic al elementelor, sunt preponderente în natură. Ele posedă capacităţi conducătoare, din punct de vedere electric, şi ca ioni au sarcini pozitive (cationi).
Rolul metalelor în organismul omului este deosebit de important. Ele formează împreună cu unele substanţe de natură proteică compuşi fundamentali, care poartă denumirea de metaloproteine, aşa cum este de exemplu; hemoglobina. Numeroase substanţe produse de către organism (enzime, hormoni), fie conţin metale, fie sunt activate de către acestea.
 Dintre metalele cele mai importante pentru om sunt:

  • metalele alcaline - care aparţin grupei I principale, perioadele 2, 3 şi 4 (litiul, sodiul, potasiul);

  • metalele alcalino-pământoase - care aparţin grupei a II – a principale, perioadele  3 şi 4  (calciul şi magneziul);

  • metalele din grupele secundare ( I, II, V, VI, VIII ) -  perioada 4 (fierul, cobaltul, cuprul, zincul, manganul, cromul, vanadiul).

     Metaloizii (metaloidele) sunt elemente de tranziţie dintre metale şi nemetale, posedând din punct de vedere electric, capacităţi semiconductoare. Pentru om, nevoia de metaloizi este mică, dar necesară, în cazul elementelor metaloide din perioadele 2, 3 şi 4. Cei mai importanţi metaloizi sunt seleniul şi siliciul. În cantităţi foarte mici şi alte metaloide (bor, arsen, germaniu) prezintă efecte favorabile pentru organismul uman.
  Nemetalele posedă în forma lor ionică sarcini negative (anioni), fiind principalele elemente cu care metalele şi hidrogenul (singurul nemetal cu sarcină pozitivă) realizează legături chimice. 
Rolul lor este major deoarece intră în structura tuturor substanţelor organice (glucide, lipide, proteine, vitamine, aciziorganici, enzime, etc.), precum şi al celor anorganice (apa, gazele de respiraţie, acidul clorhidric din stomac, sărurile minerale), care întreţin viaţa. Cele mai importante nemetale pentru om, aparţin perioadelor 1-5. Dintre acestea, oxigenul, hidrogenul, carbonul şi azotul prezintă o importanţă deosebită, ele constituind elementele de bază a oricărei substanţe organice vitale. Pentru om, şi alte nemetale sunt deosebit de importante, aşa cum sunt: fosforul şi sulful.
O grupă aparte de nemetale este alcătuită din elementele halogene, care ocupă grupa a VII -a principală a sistemului periodic. Toţi halogenii prezintă importanţă majoră pentru om, mai ales datorită faptului că prezintă monovalenţă negativă, ceea ce le conferă o mare capacitate combinatorie şi recombinatorie, şi care asigură, în acelaşi timp, proprietăţile electrolitice specifice vieţii. Halogenii mai îndeplinesc funcţii legate de: activitatea endocrină (iodul), calmarea sistemului nervos (bromul), producerea de acid gastric (clorul), formarea şi păstrarea stratului exterior solid al dinţilor (fluorul).